

Eighth Semester B.E. Degree Examination, July/August 2022 Operations Research

Time: 3 hrs.

1

Max. Marks: 80

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. Use of SQL tables is permitted.

Module-1

- a. List and explain the phases of operations research.
 - b. A manufacturing Company is producing two products A and B. Each of the products A and B requires the use of two machines P and Q. Product A requires 4 hours of processing in Machine P and 3 hours of processing in Machine Q. Product B requires 3 hours of processing on Machine P and 6 hours of Processing on Machine Q. The unit profits of product A and B are Rs.20 and Rs.30 respectively. The available time in a given quarter on Machine P is 1000 hours and on Machine Q is 1200 hours. The market survey has predicted 250 units of product A and 300 units of product B can be consumed in a quarter. The company is interested in deciding the product mix to maximize the profits. Formulate the LPP model of this problem.

OR

2 a. Discuss the applications of Operation research techniques.b. Solve the following LPP using graphical method:

Maximize $z = 6x_1 + 8x_2$

Subject to $5x_1 + 10x_2 \le 60$

 $4x_1 + 4x_2 \le 40 \\ x_1, x_2 \ge 0$

Module-2

Solve the following LPP by simplex method. Maximize $z = 10x_1 + 20x_2$

Subject to $3x_1 + 2x_2 \le 1200$

 $2x_1 + 6x_2 \le 1500$ $x_1 \le 350$

 $x_2 \leq 200$

where $x_1, x_2 \ge 0$

OR

1 of 3

(ii) Degenerate solution.

(v) Basic variable.

4 a. Define the following:

(i) Unbounded solution
(iv)Surplus variable

b. Write the dual of the following LPP:

Maximize
$$Z = 4x_1 + 10x_2 + 25x_3$$

Subjected to $2x_1 + 4x_2 + 8x_3 \le 25$

$$4x_1 + 9x_2 + 8x_3 \le 30$$

$$6x_1 + 8x_2 + 2x_3 \le 40$$

where x_1, x_2 and $x_3 \ge 0$

(iii)Slack variable

(06 Marks)

Any revealing of identification, appeal to evaluator and /or equations written eg. 42+8 = 50, will be treated as malpractice. Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

3

(08 Marks)

(08 Marks)

(08 Marks)

(16 Marks)

(10 Marks)

Module-3

- 5 a. What is balanced and unbalanced transportation problem? How unbalanced transportation problem is converted into balanced transportation problem is converted into balanced Transportation Problem, show with example. (06 Marks)
 - b. Find the initial basic feasible solution for Transportation Problem by VAM method.

(10 Marks)

	Market									
		1	2	3	4	5	Supply			
	1	10	2	16	14	10	300			
	2	6	18	12	13	16	500			
Plant	3	8	4	14	12	10	825			
	4	14	22	20	8	18	375			
	Demand	350	400	250	150	400				
			R							

6 a. For the given Transportation Problem with initial basic solution optimize the solution using MODI method. (10 Marks)

mobi met					
	1	2	3	4	Supply
1	3 250	<u>50</u>	7	4	300
2	2	6 300	5	9	400
3	8	3	3 300	200	500
Demand	250	350	400	200	

b. Solve the assignment problem and find optimal assignment and total processing time.

			1~	
~			А	В
		1	10	12
		2	7	16
	Job	3	13	14
		4	12	10
		5	8	13
	C	M	odul	e-4

	Operator										
	А	В	С	D	Е						
1	10	12	15	12	8	6					
2	7	16	14	14	11						
3	13	14	7	9	9						
4	12	10	11	13	10						
5	8	13	15	11	15						
					~						

(06 Marks)

Consider the table with details shown below of a project involving 14 activities:

Activity	А	В	С	D	Е	F	G	Н	Ι	J	K	L	Μ	Ν
Immediate				D	٨	٨	D	С,	С,	Б	ЕСЦ	FGH	т	J,K
Predecessor	-			D	A	A	D	D	D	E	г,0,п	г,0,п	1	Ј,К
Duration(months)	2	6	4	3	6	8	3	7	2	5	4	3	13	7

(i) Construct CPM network.

7

- (ii) Determine critical path and project completion time.
- (iii) Compute time schedules : EST, EFT, LST, LFT and Total floats, Free floats.

(16 Marks)

(06 Marks)

OR

- 8 a. Briefly describe the characteristics of Queueing system.
 - b. Patients arrive at a hospital reception counter at an average inter arrival rate of 2 min. The receptionist in duty takes an average of one minute per patients.

2 of 3

- (i) What is the chance that paitent will straight way meet the receptionist?
- (ii) For what portion of time the receptionist is busy.
- (iii) What is the average queue length?
- (iv) What is the average numbers of patients in the system?
- (v) What is the average waiting time of a patient?
- (vi) Nhat average time a patient spends in system.

(10 Marks)

<u>Module-5</u>

- 9 a. Explain (i) Pay off matrix (ii) MAXIMIN MINIMAX principle (iii) Saddle point
 - b. Solve the game, for two players A and B are playing a game of tossing a coin simultaneously; Player A wins 1 unit of value when there are two heads, wins nothing when there are two tails and looses $\frac{1}{2}$ unit of value when there is one head and one tail. Find the pay off matrix, the best strategies for each player and the value of game. (08 Marks)

OR

- 10 a. State the assumptions of sequencing problems.
 - b. A machine operator has to perform three operations turning, threading and knurling on a six jobs in that order. Determine the optimal schedule (sequence), total elapsed time and Idle times for the three machines.

times for the three machine	пс <u>5.</u> т 1	т ·		1.	
	Jobs	Turning	Threading	Knurling	
	, , , , , , , , , , , , , , , , , , ,	machines	machine	Machine	
		(min)	(min)	(min)	
	1	3	8	13	
	2	12	6	14	
	3 4	5	4	9	
	4	2	6	12	
	5	9	3	8	
	6	11	1	13	
St St A			**,00	Si	
G ⁱ		3 of	3		
GY GY					

(10 Marks)

(08 Marks)

(06 Marks)